Gen Inte	1 01 1 1	×			1
	rmolecular Forces, Io	Jasperse nic bond strengt	h, Phase Diagrams, Hea	ting Curves. Extra	Practice Problems
1.	Rank the ionic bond s	strength for the fo	ollowing ionic formulas	, 1 being strongest:	
	Al ₂ S ₃	MgO	MgCl ₂	NaCl	
				Strategy: Identi	ify ion charges.
2.	Rank the lattice energ	gy (ionic bond str	rength) for the following	g formulas, 1 being	strongest:
	LiF	NaF	NaCl	NaI	KI
	L.				
		<u>strategy: Wh</u>	<u>en Charges are Equ</u>	<u>ual, Use Ion Size</u>	<u>to Break Ties</u> .
3.	Rank the ionic bond s	trength for the fo	ollowing ionic formulas	, 1 being strongest:	
	Na ₂ O	NaBr	LiCl Fe ₃ N ₂	2 Ca	0
Str	ategy: Charge is	more importa	ant than Ion Size. J	Use Ion size only	to Break Ties.
4.	Arrange the following	g compounds in (order of increasing attra	ction between their	ions [.]
					ions.
	MgO		CaO	BaO.	
	MgO		CaO	BaO.	
_	MgO		CaO	BaO.	
5.	MgO Which of the followin a. MgI ₂	ng will require th	CaO e greatest energy input d. MgBr ₂	BaO.)
5. ° a t	MgO Which of the followin a. MgI ₂ b. MgF ₂ c. MgCl ₂	ng will require th	CaO e greatest energy input d. MgBr ₂ e. NaCl	BaO.)
5. 2 t c	MgO Which of the followin a. MgI ₂ b. MgF ₂ c. MgCl ₂ Which of the followin	ng will require th	CaO e greatest energy input d. MgBr ₂ e. NaCl highest melting point?	BaO.)
5. 1 t 6. 2	MgO Which of the followin a. MgI_2 b. MgF_2 c. $MgCl_2$ Which of the followin a. NaF	ng will require th ng will have the l	CaO e greatest energy input d. MgBr ₂ e. NaCl highest melting point? d. NaI	BaO.)
5. 1 t 6. 1 t	MgO Which of the followin a. MgI ₂ b. MgF ₂ c. MgCl ₂ Which of the followin a. NaF b. NaCl c. NaBr	ng will require th ng will have the l	CaO e greatest energy input d. MgBr ₂ e. NaCl highest melting point? d. NaI e. CsCl	BaO.)
5. t 6. t 7.	MgO Which of the followin a. MgI ₂ b. MgF ₂ c. MgCl ₂ Which of the followin a. NaF b. NaCl c. NaBr	ng will require th ng will have the l ng requires the lo	CaO e greatest energy input d. MgBr ₂ e. NaCl highest melting point? d. NaI e. CsCl	BaO.	2
5. 2 6. 2 7. 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	MgO Which of the followin a. MgI ₂ b. MgF ₂ c. MgCl ₂ Which of the followin a. NaF b. NaCl c. NaBr Which of the followin a. CaF ₂ b. KCl	ng will require th ng will have the l ng requires the lo	CaO e greatest energy input d. MgBr ₂ e. NaCl highest melting point? d. NaI e. CsCl owest melting point? d. MgF ₂ e. LiCl	BaO.)
5. 2 t c 6. 2 t c 7. 2 t c	MgO Which of the followin a. MgI ₂ b. MgF ₂ c. MgCl ₂ Which of the followin a. NaF b. NaCl c. NaBr Which of the followin a. CaF ₂ b. KCl c. NaCl	ng will require th ng will have the l	CaO e greatest energy input d. MgBr ₂ e. NaCl highest melting point? d. NaI e. CsCl owest melting point? d. MgF ₂ e. LiCl	BaO.	

- 8. Arrange the three compounds sodium chloride, magnesium chloride, and aluminum chloride in order of increasing melting point.
 - a. NaCl < MgCl2 < AlCl3
 - b. MgCl2 < NaCl < AlCl3
 - c. AlCl3 < NaCl < MgCl2
 - d. AlCl3 < MgCl2 < NaCl
 - e. NaCl < AlCl3 < MgCl2
- 9. Rank the attractive power for water to the following, 1 being strongest:

 Mg^{2+} Na^+ H-Br N_2

10. Ion–dipole forces always require

a.	an ion and a water molecule.	d.	an ion and a polar molecule.
b.	a cation and a water molecule.	e.	a polar and a nonpolar molecule.
c.	an anion and a polar molecule.		

11. Classify each of the following as polar (molecular), completely nonpolar (molecular), weakly polar (molecular), ionic, or metallic.

a.	CO ₂	b.	CH ₃ OH	c.	O ₂	d.	NH ₃
e.	CH ₂ Cl ₂	f.	PCl ₃	g.	СО	h.	H)C=O H
i.	SiCl ₄	j.	Fe	k.	NaCl		

12. Which of the following compounds is capable of dipole-dipole interactions?

a.	CH ₄	d.	SF_6
b.	CO_2	e.	$\mathrm{NH_4}^+$

b. CO_2 c. H_2CO

13. Which of the following compounds is capable of hydrogen bonding?

a.	CH ₃ OCH ₃	d.	H ₂ CO
b.	CH ₃ COCH ₃	e.	CH ₃ F
c.	CH ₃ CH ₂ OH		

14. Based on their boiling points, which of the following compounds has the largest dipole–dipole interaction? (They are all molecular, variably polar, but without hydrogen-bonding.)

a.	propane (231 K)	d.	methyl chloride (249 K)
b.	dimethyl ether (248 K)	e.	butane (135 K)
c.	acetonitrile (355 K)		

- 15. Classify as having network versus molecular bonding:
 - a. CH₃CH₂CH₂CH₂CH₂SH
 - b. P(CH₃)₃
 - c. K₃PO₄
 - d. C₃H₇OH
 - e. Diamond
 - f. CH₃CH₂CH₂CH₂CH₂Cl
 - g. CH₃CH₂NHCH₂CH₃
 - h. H-N=O
 - i. Fe₂O₃
 - j. CO
 - k. Zn
 - 1. NH₃
- 16. Which of the following polar compounds is likely to have the highest boiling point?

a.	CH ₃ OCH ₃	d.	H ₂ CO
b.	CH ₃ CH ₂ OH	e.	СО
c.	(CH ₃) ₂ CO		

17. Which of the following shows a "hydrogen bond"?

-CH-O-	—NH -N —	—NH-C—
—OH-N—	-0	-0H-S-
—NH-C—	-0	—SH-O—
H—C	-CH-O-	—OH-N—

18. Which of the following will have hydrogen bonding?

CH ₃ CH ₂ CH ₂ OH CH ₃ CH ₂	OCH ₃ CH ₃ CH ₂ NH	I ₂ CH ₃ CH ₂ SH
--	---	---

19. Rank the following in terms of increasing boiling point: LiCl C_3H_7OH C_4H_8 N_2

- a. $N_2 < LiCl < C_3H_7OH < C_4H_8$
- b. $LiCl < C_4H_8 < C_3H_7OH < N_2$
- c. $N_2 < C_4 H_8 < C_3 H_7 OH < LiCl$
- d. LiCl $< C_4H_8 < N_2 < C_3H_7OH$
- e. $C_3H_7OH < C_4H_8 < N_2 < LiCl$

20. Which is higher boiling, and why? (Both have the same formula, C3H8O)

CH₃CH₂OCH₃ CH₃CH₂CH₂OH

- 21. Rank the boiling points for the following, 1 being highest:
 - Cl_2 Br_2 I_2
- 22. Rank the melting points for the following, 1 being highest:

$Ca(OH)_2$	CH ₃ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ CH ₂ OH	CH ₃ CH ₂ OCH ₃
()=	<u> </u>		2 1 2

23. Rank the evaporation rate (1 being highest)

CH₃CH₂CH₂CH₂CH₂OH CH₃CH₂CH₂OH CH₃CH₂CH₂CH₃ CH₃CH₂OCH₃

24. Rank the melting points for the following, 1 being highest:

C	H ₃ CH ₂ CH ₂ NH ₂	LiCl	N(CH ₃) ₃	CH ₃	CH ₂ CH ₂ CH ₂ CH ₂ C	CH ₂ NH ₂
25. Ra	ank the following in term	s of <u>increas</u>	sing boiling point:	C U OU	CII	CaDr
			C_4H_9OH	C_2H_5OH	C_4H_{10}	CaBr ₂
a.	$C_4H_{10} < CaBr_2 < C$	$_{2}\mathrm{H}_{5}\mathrm{OH} < 0$	C4H9OH			
b.	$CaBr_2 < C_4H_{10} < C_2H_5$	$_{5}OH < C_{4}H$	H ₉ OH			
c.	$C_4H_{10} < C_4H_9OH < 0$	$C_2H_5OH <$	CaBr ₂			
d.	$C_2H_5OH < C_4H_{10} < C_5$	$_{4}H_{9}OH <$	CaBr ₂			
e.	$C_4H_{10} < C_2H_5OH < C_2H_5OH$	$_{4}H_{9}OH <$	CaBr ₂			

26. Rank the following in terms of increasing boiling point:

CH₃CH₂OCH₂CH₃ CH₃CH₂OCH₃ CH₃CH₂CH₂CH₃ CH₃CH₂CH₂CH₂CH₂CH₂NH₂

- a. CH₃CH₂OCH₃< CH₃CH₂CH₂CH₂CH₃< CH₃CH₂CH₂CH₂CH₂CH₂NH₂
- b. $CH_3CH_2CH_2CH_3 < CH_3CH_2OCH_3 < CH_3CH_2OCH_2CH_3 < CH_3CH_2CH_2CH_2CH_2NH_2$

27. For F₂, C₃H₇OH, and Na₂O, which of the following is true at room temperature?

- a. F₂ is a gas, C₃H₇OH is a liquid, and Na₂O is a solid
- b. Na₂O is a gas, F_2 is a liquid, and C_3H_7OH is a solid
- c. F_2 is a gas, Na₂O is a liquid, and C₃H₇OH is a solid
- d. C₃H₇OH is a gas, F₂ is a liquid, and Na₂O is a solid

28. For CO₂, $Zn(NO_3)_2$, and $C_5H_{11}NH_2$, which of the following is true at room temperature?

- a. $Zn(NO_3)_2$ is a gas, CO_2 is a liquid, and $C_5H_{11}NH_2$ is a solid
- b. CO_2 is a gas, $C_5H_{11}NH_2$ is a liquid, and $Zn(NO_3)_2$ is a solid
- c. CO_2 is a gas, $Zn(NO_3)_2$ is a liquid, and $C_5H_{11}NH_2$ is a solid
- d. $C_5H_{11}NH_2$ is a gas, CO_2 is a liquid, and $Zn(NO_3)_2$ is a solid
- 29. The highest vapor pressure is observed for which of the following liquid/temperature combinations?
 - a. C_6H_{14} at 275 K
 - b. C₆H₁₄ at 299 K
 - c. C₅H₁₂ at 299 K
 - d. HOC₄H₈OH at 299 K
 - e. HOC_4H_8OH at 275 K
- 30. Which of the following liquids would have the <u>lowest vapor pressure</u>, factoring in both the impact of the substance and the temperature?
 - a. CH_3NH_2 at $25^{\circ}C$
 - b. SiH₄ at 75° C
 - c. SiH₄ at 25° C
 - d. C₃H₇NH₂ at 25°C
 - e. $C_3H_7NH_2$ at 75°C

- 31. Which of the following liquids would have the <u>lowest viscosity</u>, factoring in both the impact of the substance and the temperature?
 - a. C_3H_7OH at $25^{\circ}C$
 - b. C_3H_7OH at $75^{\circ}C$
 - c. $MgBr_2 at 25^{\circ}C$
 - d. $C_5H_{11}OH$ at $25^{\circ}C$
 - e. $C_5H_{11}OH$ at $75^{\circ}C$
- 32. CH₂F₂ has a dipole moment of 1.93 D and a boiling point of -52°C. CH₂Cl₂ has a dipole moment of 1.60 D and a boiling point of 40°C. Why is the boiling point of dichloromethane 92° higher than that of difluoromethane? Which of the following explains why dichloromethane has the higher boiling point?
 - a. CH₂F₂ is more polar and thus must have stronger binding forces. With stronger intermolecular attraction, of course CH₂F₂ will have a lower boiling point.
 - b. CH_2Cl_2 is ionic while CH_2F_2 is molecular.
 - c. CH_2Cl_2 has hydrogen-bonding while CH_2F_2 does not.
 - d. That CH_2Cl_2 has a higher boiling point proves that is has stronger intermolecular attractions, even though CH_2F_2 has a larger dipole moment. Evidently CH_2Cl_2 has larger London dispersion attraction, which is more than making up for it's smaller permanent dipole.
- 33. HCl (mw=36.5) has a dipole moment of 1.03 D and a boiling point of 190K. HBr (mw=80.9) has a dipole of 0.79 D and a boiling point of 206K. Which of the following statements is true?
 - a. HBr is more polar.
 - b. HCl has stronger intermolecular forces.
 - c. HCl has stronger London dispersion forces
 - d. Both molecules have hydrogen bonding.
 - e. That HBr has a higher boiling point proves that it is has stronger intermolecular attractions, despite it's lesser dipole moment. Evidently with its extra mass it has much stronger London dispersion attraction, enough so to overcome the dipole advantage of HCl.
- 34. Hexane, C₆H₁₄ (mw=86) has a boiling point of 68°. Ethanol, CH₃CH₂OH (mw=46) has a boiling point of 78°. Mark each of the following statements as TRUE or FALSE.
 - a. Ethanol must have stronger intermolecular attraction, based on its higher boiling point.
 - b. Ethanol has a higher boiling point because of greater London dispersion force
 - c. Both hexane and ethanol have hydrogen bonding.
 - d. Ethanol has a higher boiling point due to hydrogen bonding.
 - e. Hydrogen bonding and London dispersion forces are at cross purposes here. (One favors ethanol, the other favors hexane.) In this case, the hydrogen bonding evidently "wins".
- 35. Viscosity is a measure of a substance's

a.	ability to resist changes in its surface area.	d.	compressibility.
b.	surface tension.	e.	color.
c.	resistance to flow.		

36. Which letter represents:a. Gas Phaseb. Liquidc. Solidd. Triple Point37. What is the normal bp?
a) 20° b) 40° c) 65° d) 80° 38. What is the normal mp?
a) 12° b) 40° c) 80°

39. When a liquid originally at 20° and 1 atm has pressure reduced, at what pressure will it vaporize?

40. When a liquid originally at 20° and 1 atm has pressure increased, at what pressure will it solidify?

41. When solid at 1.0 atm is warmed, does it:	a) melt	or	b) sublime
42. When solid at 0.3 atm is warmed, does it:	a) melt	or	b) sublime

- 43. Suppose a solid is originally at 0.3 atm and 0°C. If it is first pressurized to 1.0 atm, and then subsequently heated to 60°C, what will happen to it?
 - a. It will sublime directly to gas
 - b. It will melt and end up as a liquid
 - c. It will first melt, and then boil, ending up as a gas
 - d. It will sublime to gas, then compress to a liquid and end up in the liquid phase
 - e. No phase change will happen. It will just stay solid.
- 44. Suppose a solid is originally at 0.3 atm and 0°C. If it is first heated to 30°C, then pressurized to 1.0 atm, what will happen to it?
 - a. It will sublime directly to gas and stay a gas.
 - b. It will melt and end up as a liquid
 - c. It will first melt, and then boil, ending up as a gas
 - d. It will sublime to gas first, then compress to a liquid and end up in the liquid phase
 - e. No phase change will happen. It will just stay solid.

Heating Curves

45. Which regions on the on the heating curve shown (Temperature versus heat, "q") corresponds to:

- a. a pure gas increasing in temperature
- b. a liquid increasing in temperature
- c. a solid increasing in temperature
- d. a solid melting
- e. a liquid boiling
- 46. On the above heating curve, which phases are present:
 - a. in region "a"
 - b. in region "b"
 - c. in region "c"
 - d. in region "d"
 - e. in region "e"

General Chemistry II Jasperse Intermolecular Forces, Ionic bond strength, Phase Diagrams, Heating Curves. Extra Practice Problems

Answers

- 1. 1-2-3-4 (Al₂S $_3$ > MgO > MgCl₂ >NaCl) Ion charge
- 2. 1-2-3-4-5 (LiF > NaF > NaCl > NaI > KI (Ion size)
- 3. 3-5-4-1-2 (Fe₃N₂ > CaO > Na₂O > LiCl > NaBr) (Ion size first, then size as tiebreaker)
- 4. 1-2-3 (MgO > CaO > BaO)
- 5. b
- 6. a
- 7. b (this is for corrected version of question. Original version had a confusion factor included)
- 8. a

9. 1-2-3-4 $(Mg^{2+} > Na^+ > H-Br > N_2)$

10. d

- 11. Classify
 - a. Nonpolar
 - b. Polar
 - c. Nonpolar
 - d. Polar
 - e. Weakly polar
 - f. Polar
 - g. Polar
 - h. Polar
 - i. Nonpolar
 - j. Metal
 - k. Ionic
- 12. C
- 13. C
- 14. C
- 15. Classify
 - a. Molecular
 - b. Molecular
 - c. Network
 - d. Molecular
 - e. Network
 - f. Molecular
 - g. Molecular
 - h. Molecular
 - i. Network
 - j. Molecular
 - k. Network
 - l. Molecular
- 16. B
- 17. Which show a "hydrogen bond"

–O^{……}H-N-

–N[…]H-N-–O[…]H-O-

-0 11-0

–O^{……}H-N-

- 18. CH₃CH₂CH₂OH, CH₃CH₂NH₂
- 19. C
- $20. CH_3CH_2CH_2OH$
- 21. 3-2-1

```
22. 1-3-2-4 (Ca(OH)<sub>2</sub> > CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH > CH<sub>3</sub>CH<sub>2</sub>OH > CH<sub>3</sub>CH<sub>2</sub>OCH<sub>3</sub>)
23. 4-3-1-2 (CH_3CH_2CH_2CH_3 > CH_3CH_2OCH_3 > CH_3CH_2CH_2OH > CH_3CH_2CH_2CH_2CH_2OH)
24. 3-1-4-2 (LiCl > CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>> CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>> N(CH<sub>3</sub>)<sub>3</sub>)
25. e
26. b
27. a
28. b
29. c
30. d
31. b
32. d
33. e
34. a, d, and e are all true.
35. c
36. Y-X-W-Z
37. B
38. A
39. About 0.5 atm
40. About 1.5 atm
41. Melt
42. Sublime
43. C
44. d
45. e-c-a-b-d
46.
          a. solid
```

- b. solid + liquid
- c. liquid
- d. liquid + gas
- e. gas